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The scaling properties of a class of shell models are studied, via their velocity structure functions. The
models all conserve energy and the fundamental symmetries of the Navier-Stokes equations. They also
conserve a second quantity, which depends on the coefficients of the nonlinear terms, parametrized by €.
Models with € varying from 0.2 to 10 are considered. All the models are found to display extended self-
similarity, which allows a better estimate of the scaling exponents of the structure functions at any order.
In most cases, deviations from Kolmogorov 1941 scaling are observed. As in fully developed turbulence,
this intermittency is consistent with probability distribution functions resembling logarithmic Poisson
distributions (exponential wings, negative skewness). Their signature is a hierarchical structure of the
moments of the energy dissipation. The hierarchy is characterized by two main parameters, A and S,
describing, respectively, the smallest dissipative scales and the degree of intermittency of the energy
transfers. These parameters are measured in each shell model and the curves A and 3 as a function of €
are obtained. Two interesting transitions are obtained, for e=0.39 and e=1. In the first case, the system
goes from nonintermittent to intermittent, with 8 and A going from =1, A=0 to <1, A¥0. This
transition corresponds to the stable-unstable transition in some mapping characterizing the shell models.
In the second case, discontinuities in both 8 and A are observed. This transition corresponds to the sep-
aration between models with “helicitylike”” or ‘“enstrophylike” conservation laws. Apart from these in-
teresting transitions, no obvious correlation between the three parameters is found, indicating the com-
plexity of the scaling character. Shell models, however, stand as a powerful tool to investigate the scale
invariance, and the development of a complete theory which may help in understanding fully developed
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I. INTRODUCTION

Among the various symmetries satisfied by the
Navier-Stokes equation, the scale invariance is the most
appealing and the most mysterious. Its existence suggests
the possibility of a universal description of the tur-
bulence. Yet, even in the simple isotropic case, the evi-
dence of universality is not compelling. In two-
dimensional flows, the shape of the energy spectrum ap-
pears to depend critically on the nature of the coherent
vortices generated by the interplay between energy input
and dissipation [1,2]. In three dimensions, this depen-
dence is milder and seems more connected with the spa-
tial distribution of the dissipative structures. Higher or-
der statistical indicators do not follow the prediction ob-
tained within the framework of local scale invariance.
For example, the exponents of the structure functions of
the velocity increments over a small distance / do not fol-
low the linear §,=p /3 law predicted by Kolmogorov.

New perspectives were offered recently by a model of
intermittency proposed by She and Lévéque [3]. This
model relies on a hierarchical structure of the moments
of energy dissipation. It is characterized by only two pa-
rameters, A and S, characterizing, respectively, the
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geometry of the smallest dissipative scales and the degree
of intermittency of the interactions [4]. The hierarchy
was later shown to be related to a logarithmic Poisson
statistics for the energy dissipation [4,5]. An interesting
feature of the logarithmic Poisson distribution is its co-
variance with respect to a generalized scale transforma-
tion [4]. This led Dubrulle [4] to postulate that the
hierarchy of the moments of energy dissipation could be
directly related to the scale invariance property of the
Navier-Stokes equation, and could then be a generic
feature of a scale invariant system. It is then natural to
investigate whether the moments hierarchy proposed by
She and Lévéque also holds in simple representations of
the Navier-Stokes equations, the shell models of tur-
bulence. These models, described in Sec. II, are easier to
study than the full nonlinear Navier-Stokes equations and
present some analogy with incompressible fluid models.
For example, they have quadratic nonlinearities and con-
serve energy. They can also be characterized by the con-
servation of an additional quantity, similar to a general-
ized enstrophy or helicity [6,7] which is equivalent to the
helicity or the enstrophy only for specific values of the
parameters describing the models [7]. In this sense, the
shell models can be seen as simple generalizations of
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two-dimensional (2D) or 3D turbulence. This raises
another interesting issue, within the intermittency model
of She and Lévéque: will the potential moment hierarchy
also be characterized by the same parameters A=f=2
[3] as in 3D isotropic turbulence? If the hierarchy is
indeed directly connected with the scale invariance of the
interactions, we may expect A and 8 to be nonuniversal
and dependent on the conservation laws or boundary
conditions of the system [4]. The scale invariance sym-
metry would then enforce the shape of the interactions
(the existence of the hierarchy) but not the value of the
constants.

The goal of the present contribution is to explore par-
tially this issue. Specifically, we shall examine whether
the moment hierarchy observed in 3D isotropic tur-
bulence [8] is also found in the generalized shell models,
and study the variation of the corresponding parameters
A and B with the nature of the conservation laws (Sec.
I1I).

II. MAIN PROPERTIES
OF THE GENERALIZED SHELL MODEL

A. Description

The shell models were introduced in the 1970s [9,11] as
an attempt to mimic the Navier-Stokes equations via
dynamical systems with limited degrees of freedom.
They are constructed by truncations of the Navier-Stokes
equations in the Fourier space, retaining only one real or
complex mode U, as a representative of all the modes in
the shell of wave number k between k, =k,A" and k, .
The parameter A characterizes the ratio between two ad-
jacent scales. It is one of the main parameters of the
model, and is usually taken equal to A=2. From now on,
we shall adopt this value. Note, however, that other
values may be considered [7]. The coupling between the
shells is chosen so as to preserve the main symmetries
and properties of the Navier-Stokes equations. In this
paper, we shall consider a class of so-called GOY shell
models (Gledzer, Ohkitani, and Yamada) in the form in-
troduced in [6], which is governed by the following set of
complex ordinary differential equations:

(d,+vk})U, =ik, U:+1U:+2_§U;~1U:+1

1 —
—(f‘f*")u,;*_zu,;*_1 +f, - (1)
Here, the asterisk stands for the conjugate, f, is a ran-
dom force, acting only on the few shells near n =0, and €
is a free parameter. One gets the model of Gledzer [11] if
£=1.25 and the model of Yamada and Ohkitani [10] if
€=0.5.

In fully developed turbulence, an important dynamical
quantity is the spectral flux of energy. The correspond-
ing quantity in shell models, the flux of energy II, from
shells with k <k, to shells with k = k,, can be written
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n

U,=pne

B. Properties

All the models in the GOY class are scale invariant in
the inviscid, force-free limit (f,,v—0). Specifically, Egs.
(1) are formally invariant under the entire group of scal-
ing transformations D, :

k,—>A"'k,, U,—A"U,, t—A"", A>0 3)

with arbitrary similarity exponent 4. This symmetry is
also found in Navier-Stokes equations.

The GOY class of shell models is also characterized by
a number of conservation laws, in the inviscid, force-free
limit. The conserved quantity W can be written

w=3|U,|’z", 4)
n
where z satisfies the quadratic equation [7]
(e—1)z2—ez+1=0. (5)
This equation admits two solutions, z=1 and

z=1/(e—1). The first solution corresponds to the ener-
gy conservation

E=3|U,*. (6)

It is a conserved quantity common to all shell models.
The second solution corresponds to the conservation of a
generalized enstrophy:

H=T [sgn(e—1)]"kXe)|U,|*, @)

where a(e)=—log,(|le—1]/2) and sgn(e—1)=—1 if
e<1 and sgn(e—1)=1if e> 1. In the first case, the con-
served quantity is similar to a “helicity” [7]; in the second
case, it is more similar to an enstrophy.

The conserved quantities correspond to two sets of
static solutions: Kolmogorov-like [U,=k, g (n),
g1(n) being any periodic function of period 3] and flux-
less-like (U, =k}®'g,(n), g,(n) being any periodic func-
tion of period three, y =[log,(|e—1]/2)]/3), character-
ized by a negligible energy transfer (II,=0) [6]. The
Kolmogorov solution corresponds to an ultraviolet stable
fixed point of the ratio mapping U, ,;/U, for 0<e<2
and infrared stable fixed point otherwise. The stability of
the second solution is opposite. Here, ultraviolet (in-
frared) stable means that the fixed point is asymptotically
approached by forward (backward) iteration of the ratio
map, corresponding to a cascade of energy from small
(large) to large (small) scales. A numerical study of the
transition to chaos in the shell models with 0 <eg <1 was
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performed by Biferale et al. [6]. They found that the
Kolmogorov static solution corresponds to a stable fixed
point for € <g;,=0.3843. The point becomes unstable at
€=¢g,, via a Hopf bifurcation. For larger values of €, the
systems evolve into a chaotic state, following the Ruelle-
Takens scenario. For 1>g>¢,=0.3953, the dynamical
evolution is intermittent with a positive Lyapunov ex-
ponent. This regime is characterized by a strange attrac-
tor remaining close to the Kolmogorov unstable fixed
point.

The equivalent analysis for ¢>1 has not been per-
formed yet. It is complicated by the existence of back-
wards energy transfers induced by the conservation of the
generalized enstrophy [15].

‘We may note several interesting cases.

(1) e=1; in that case a=1 and sgn(e—1)=—1: The
two conserved quantities are the energy and the helicity
[7]. This is the usual GOY model, which is considered as
the analog of the isotropic 3D turbulence. It has been
studied intensively both numerically [12,13,10] and
analytically [14], using a closure model.

(2) e=1; in that case a = «, no cascade is possible.

(3) e=2; in that case a=2 and sgn(e—1)=1: The two
conserved quantities are the energy and the enstrophy, as
in two-dimensional turbulence. The two corresponding
static solutions are (U, ~k, /3 and U,~k, '), leading
to spectral properties analogous to what is found in the
usual 2D turbulence. The energy spectrum is indeed
made of two power laws: k ~°/3 at wave numbers smaller
than the forcing, corresponding to the inverse energy cas-
cade; at larger wave number a power law close to k 3,
corresponding to the enstrophy cascade.

This type of shell model was considered by Gledzer
[11]. Later, Frick [16] considered a modified version of
this model which includes also the nonlocal interactions
(U,U,+1U,—j, j=1,2,... and corresponding terms).
This modified model was used recently by Frick and
Aurell to study the direct cascade of enstrophy [17]. In
contrast with direct numerical simulations of 2D tur-
bulence which predict steeper spectra than k ~3 [1], the
shell model does not lead to strong deviations from the
k 3 law. In the shell model, the deviations from the k ~3
laws are small but systematically increasing with the
wave number and are neither consistent with logarithmic
[18,19] nor stretched exponential corrections. We shall
quantify this discrepancy in Sec. III.

(4) e=2; in that case a=0: [Kolmogorov 1941 (K41)
model] and the only conserved quantity is the energy.
The fixed point of the shell models is only the Kolmo-
gorov solution U, ~k, /3.

(5) €=3; in that case a=1 and sgn(e—1)=1: The
second conserved quantity is the dimensional quadratic
equivalent of the ‘“action” [20], a hidden integral of
motion in 3D turbulence written in Clebsch variables.

C. Numerical implementation

Numerical solutions of Egs. (1) were obtained with
0.2=<e=10.0. The number of shells used in the simula-
tions was typically of the order of 31 (0<n <30). The
largest number of shells used in the case e=1.25 was
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51(—20=<n =<30). The value of viscosity v was adjusted
in the interval 107 <y <1078 to get in each case the
largest possible “inertial” range. The system was forced
by random force in zeroth and first shells so that the en-
ergy of these shells remains constant (p, and p, are con-
stant, and their phases are random).

The time integration has been done using the fourth-
order Runge-Kutta method with fixed time step. The
typical time step was 10> except when e=2. In this
case, the characteristic times are scale independent, as in
2D turbulence, and an increase of the total number of
shells can be made without decreasing the time step. We
therefore choose a value of 0.01.

In shell models, each scale is described by only one
mode, without reference to any spatial distribution.
Therefore statistics can only be obtained as time-averaged
characteristics. The (time) averaging is denoted by { )
throughout the rest of this paper. Runs up to 10® time
steps were made.

The main characteristics of the models are summarized
in Table I: the viscosity, the mean value of the exponent
of the third structure function and the relative exponent
for the second structure function, the mean energy flux in
the “inertial” range, and the two scaling parameters A
and B, defined in Sec. III.

The table includes four cases for € < 1: one correspond-
ing to stable solutions, € =0.33, one near the onset of the
chaotic solution, e =0.39, one corresponding to the usual
GOY model, €=0.5, and one with €=0.75. All other
data span the range € > 1. Note that in the case e=1, no
energy cascade is present and so the results are very sen-
sitive to initial conditions. We have therefore excluded
this pathological case.

We have done some additional simulations for different
€<1 (see Figs. 6-10) but the runs were relatively short
and enable only the evaluations of parameters A, 8 and
not of structure function exponents.

III. SCALING PROPERTIES
OF SHELL MODELS

A. The She-Lévéque intermittency model

One famous manifestation of scale invariance (3) in tur-
bulence is the self-similarity of the structure functions of
the velocity increments over a distance |,
dv;=v(x +1)—wv(x) in the inertial range:

(8vp)=C, 1 forallp, ®)

where C, are some numerical constants and &, some scal-
ing exponents. This property may also be written in a
more symmetrical form:

(dvf)y=cC, Svf)g" % for all DS , (9)

where C, ; are some numerical constants and / is in the
inertial range. In fact, Benzi et al. [21] showed that in
3D isotropic turbulence the property (9) extends over a
much larger range of scale, from the injection scale down
to a few Kolmogorov scale. It was therefore called ex-
tended self-similarity (hereafter ESS). Since then, the
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TABLE I. Main characteristics of the shell models studied in this paper: coefficient of the nonlinear
terms &, viscosity v, third order structure function exponent &;, second order structure function relative
exponent £,, mean energy dissipation (¢, ), intermittency exponent A, and hierarchy constant 3.

€ v 83 Zz () A B
0.33 10712 1.01 0.66 5.7X1074 0.0007+0.0001 0.97+0.06
0.39 10712 1.01 0.66 40X1073 0.0020+0.0003 0.85+0.10
0.5 2X10°10 1.03 0.72 5.8X107¢ 0.45+0.07 0.47+0.15
0.75 10~° 1.05 0.79 1.4x1007° 0.65+0.07 0.31+0.15
1.0
1.15 10718 4.05 0.666 <1072 —0.013+0.010 0.84%0.10
1.25 10718 3.16 0.667 ~10718 0.013+0.005 0.87+0.10
1.5 10~ 2.12 0.670 ~107M1 0.077+0.006 0.68+0.10
1.75 1071 1.49 0.675 3x107° 0.13+0.02 0.70+0.08
2.0 10713 1.29 0.676 8§Xx107% 0.18+0.02 0.63+0.07
25 10712 1.17 0.680 1.0x107¢ 0.29+0.02 0.59+0.07
3.0 10712 1.08 0.682 1.3X1073 0.32+0.03 0.60+0.07
4.0 10712 1.03 0.689 2.6X107°¢ 0.29+0.03 0.57+0.09
5.0 10712 1.01 0.686 5.7X107¢ 0.30+0.04 0.54+0.07
6.0 3x10712 1.02 0.689 1.4X1073 0.29+0.03 0.55%0.08
7.0 10~ 1.0 0.69 3.6X1073 0.28+0.03 0.58+0.10
8.0 2X10710 1.0 0.71 8.0X1073 0.28+0.03 0.55+0.10

10.0 10~° 1.0 0.71 2.4X1074 0.30+0.05 0.52+0.10
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same property was also found in 2D turbulence [22] or in
magnetohydrodynamics (MHD) turbulence [23]. This
may indicate that it is somehow related to the scale in-
variance of these systems. As we shall see, this property
will also be found in the GOY shell models. In any case,
ESS enables better accuracy in the determination of the
scaling exponents §, by enlarging the self-similar range.
We shall therefore check and try it on shell models.

The She-Lévéque model [3] predicts a simple shape for
the scaling exponents §,. It was later recast by Dubrulle
[4] to take into account ESS. The corresponding model
then relies on three main hypotheses, involving a dimen-
sionless flux of energy at scale I:

€]

m = ng) N (10)
where €; is the mean energy dissipation in a domain of
size [, and s§°°) is a normalization function, which enables
us to factor out all the geometry dependence of the dissi-
pation. That way, m, truly represents an “inertial range”
quantity, independent of external conditions.
The three hypotheses follow.
(i) Similarity:
8v13 scal g ™ (a1
(&v} () (m)’
scal
where = means having the same scaling properties, i.e.,
that the moments of the corresponding distribution are
everywhere proportional, up to a (moment-dependent)
numerical constant. This assumption is a natural exten-
sion of the Kolmogorov refined similarity hypothesis
[24]. Hypothesis (11) is interesting because, contrarily to
the Kolmogorov refined similarity hypothesis, it cannot
be derived by Taylor’s hypothesis, which links the time

scale of energy dissipation with the velocity and length
scales (see, e.g., the discussion in [7]). Taylor’s hypothesis
is only meaningful in cases where small eddies are swept
by large ones. In shell models, there is no coupling be-
tween the large scale velocity and the small scale (the in-
teractions are local in scale space), so that one cannot
directly use the Kolmogorov refined similarity hypothesis
[7]. Hypothesis (11) is then an interesting alternative.
Other solutions may also be found using the multifractal
approach [7].
(ii) Moment hierarchy:

(mp*ly (mh)

A |

B
, 0=B=1 (12)

where A4, are numerical constants. Note that the condi-
tion B=1 guarantees the convergence of high order mo-
ments. The parameter 3 can be interpreted as an anoma-
lous exponent, characterizing the intermittency of the in-
teractions [4]. For example, if the moments follow a
power law (mf)~IP* as in Kolmogorov local theory,
then S=1. In fully developed isotropic 3D turbulence,
B=2 [3]. Itis not yet clear how 3 depends on the charac-
teristics of the system (conservation laws, boundary con-
ditions, number of degrees of freedom, codimension of
the dissipative structures. Giving clues to answer this
question is one of the main goals of the present contribu-
tion. The interpretation of the constants 4, is also in-
teresting. They mainly depend on the boundary condi-
tions and geometry of the flow [3]. Once they are given,
the probability distribution for the interactions is unique-
ly defined via (12). For example, if 4,= 4, =cte, the in-
teractions follow a logg Poisson statistics [4,5]. Note also
that it means that €}~ (7, )~ (b *1) /(&£ for all p,
so that if B < 1 we have exactly
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gl)~ lim ——— . (13)
The normalization factor £;*’ can then be interpreted as
tracing the tail of the distribution of energy dissipation,
i.e., it represents the energy dissipation in the most inter-
mittent structures.

(iii) Power-law intermittency:

<8U13)

()~ €07

) (14)

where 7 is the Kolmogorov scale. This assumption mere-
ly states that the dissipative structures are spatially inter-
mittent [4].

The combination of the three assumptions ensures that

the structure functions follow the extended self-
similarity:

(8up)=C,(8v})"" (15)
with a relative exponent:

- (1— /3

£,=(1—n)2 4 U=F7) (16)

3 (1—-p)

The scahng of the structure functions in the inertial range
(Svf)~1 % corresponds then simply to an absolute scal-
ing exponent:

& =638, - a7

Taking £;=1, and A=B=21, one finds the formula pro-
posed by She and Lévéque [3], which fits very well the ex-
perimental data on fully developed isotropic 3D tur-
bulence. As we shall see, the GOY class of shell models
is characterized by different constants.

B. Spectra and flux

The spectra are plotted in Fig. 1 for 1.25<g<10. The
slope of the spectra can be inferred from the mean value
of the second structure function exponent, whose relative
value £, is computed in all cases for 10<n <20. All the
other characteristics (the energy flux, the relative ex-
ponents, the parameters A and ) were obtained in the
same range. They are all given in Table 1.

Ow T T T
-10 g‘ | | ~
20r “%%Q%%%g ]
301 er oéxff% -
<E,>40F =125 ® O°ox %@ -
e=15 o 'o. °

R U 1.73 X L 2_
60 - g; 3 ‘."' 8i 4
-70 e=5< 004
%0 e=7o ; 1 , i
0 5 10 15 20 25 30

n

FIG. 1. Energy distribution in the shells.
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When £€=1.25 the spectral energy distribution is close
to a Kraichnan spectra E(k)~k ~3 with small but sys-
tematic deviations, increasing with n [17]. When ¢ in-
creases the slope of the spectrum decreases (see Fig. 1).
For ¢=2, it is close to —3 and approaches asymptotical-
ly Kolmogorov’s law for larger values of €. At the same
time, the average flux of energy increases and energetic
bursts produce a spreading of the spectrum towards
smallest shells. To remain in the same range of wave
numbers (shells) the value of the viscosity has to be in-
creased. The characteristic time needed to obtain accu-
rate mean values of increments also increases. Computa-
tional cost limited our simulations to 10% time steps,
which is too small to get accurate values for Ep for e> 6,
p>4.

The transport processes (both of energy and of general-
ized enstrophy) are governed by the triple correlations
©, (2) or by the averaged value ®=/(sin(¢,_,;+¢,
+6,+1)). The graph of this quantity is given in Fig. 2.
It indicates quite different behavior for small and large &,
without noticeable transition at e=1. Note that the
crossing between negative and positive values occurs at
the 2D case e=2. This could explain the quasiequilibri-

um behavior of the 2D shell model [25].

C. Structure functions

The velocity structure functions of order p are defined
in our shell models as

S,(m)=(lU,|Py=(ps) , (18)

where, as in (2), p,, is the modulus of the (complex) veloci-
ty. Their scaling properties can be investigated in two
ways: either by considering their variation with the wave
number k, (“classical scaling”) or using the concept of
extended self-similarity (see Sec. III A). In the first case,
one looks for a range of wave number in which

S,(n)~k, 7, (19)

where §, is a local scaling exponent. In the second case,
one uses the third structure function as a Eeference, and
one computes the relative scaling exponent

Sp(n)~(pf,>§” . (20)
02 T T T T
- * . . L
0 R
[y

€

FIG.2. ®=(sin(¢, _,+¢, +¢,41)) versus €.
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If ESS also exists in shell models, one expects (20) to hold
over a wider range of scale than (19) and to provide a
more accurate estimate for the scaling exponents.

This expectation was indeed fulfilled in all cases con-
sidered. The most impressive results are given by models
in which the spectrum contains very different parts [e.g.,
increasing, equidistributed, inertial, and dissipative
range—see Fig. 3(a) corresponding to e=2]. The figure
shows the stationary distribution of shell energy in the
system with the forcing in the zeroth shell and the output
of energy in the largest scale. This kind of spectra ob-
tained in Fig. 3(a) has been obtained by Aurell ez al. [25],
who undertook an investigation of the inverse cascade in
shell models. They discovered that the formerly reported
inverse k 73’3 cascade [11,16] develops only during some
transitional stage, being later replaced by a k ~! spectrum
corresponding to energy equidistribution over the shells.
The k ~3 spectrum (for n >0) coincides with the dimen-
sional predictions on the power spectra from a supposed
forward cascade of enstrophy, but is well described as a
formal statistical equilibrium with enstrophy equidistri-
bution over the shells [25]. Note that in this case, the
characteristic time scale is scale independent
[E(k)~k™3% U,~27", so that an extended range of
shells —20 < n < 30 could be considered].

While a different local scaling exponent would be ob-
served in each corresponding range of scales, a single rel-
ative scaling exponent suffices to describe the variety of
behavior. This is shown in Fig. 3(b), for the second and
sixth structure functions. When the logarithms of S, and
S¢ are plotted versus the logarithm of S;, beautiful
straight lines are obtained. The points corresponding to
the positive (inertial and dissipative range) and the nega-

log < En >
T T T T T T T T
a
go000000e,
0 . '.'0.
hd ...'o .
r °
.....o .......
-10 1* o, b
®e
L o. 4
-80 |- o
1 1 L L 1 1 1 L 1 9
20 10 0 10 20 n
log < p? >
T T T T T
b
0r .
o0°
®
-50 ° o ° MO —
00° S2,n <0 o
-100 - OOOO S;,n>0 @
o Se,n <0 o
-150 F o Seyn>0 o o
2200 =l ! I I 1 1
-100 -80 -60 40 -20 0 log<pd>

FIG. 3. (a) Energy distribution in the shells. (b) Structure
functions S, and S¢ versus S; in log-log coordinates. The base
of the logarithms is 10.
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tive (increasing and equidistributed range) shell numbers
are plotted with different markers. Note that all the
points are lying near the same lines.

This observation shows that it is more interesting and
more reliable to work with relative scaling exponents Ep
rather than absolute ones, § P In the case considered in
Fig. 4 (¢=2), the absolute scaling exponent varies con-
tinuously as one goes from the increasing to the dissipa-
tive range [see Fig. 4(a)]. It is then difficult to estimate
(or even define) accurately the exponent §,. In contrast,
the relative scaling exponent may be defined and comput-
ed over a much wider range of scales [Fig. 4(b)]. This is
another indication that they are the relevant quantities to
consider in scale invariant systems. We therefore only fo-
cused on the computation of the relative exponents.
Their values, up to the sixth order, are given in Table II,
as a function of €. Note that the “local” linear K41 pre-
diction fp =p /3 is realized only for models with £ <0.39,
where K41 is a fixed point solution. In all other cases, in-
termittency is observed with noticeable deviations from
the linear law.

D. Similarity hypothesis

As in fully developed turbulence, the extended self-
similarity can be taken into account by a similarity hy-

N

-5 o 5 10 15 20 25

El

FIG. 4. The scaling exponents §, (a) and Ep (b) for e=1.25.
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TABLE II. Measured relative scaling exponents using ex-
tended self-similarity.

€ 51 Zz 54 55 Es
0.33 0.33 0.66 1.33 1.66 2.00
0.39 0.33 0.66 1.33 1.66 2.00
0.5 0.40 0.71 1.27 1.53 1.81
0.75 0.45 0.79 1.16 1.31 1.45
1.0
1.15 0.332 0.666 1.334 1.667 2.001
1.25 0.334 0.667 1.333 1.665 1.996
1.5 0.337 0.670 1.327 1.652 1.975
1.75 0.342 0.675 1.319 1.634 1.945
2.0 0.343 0.676 1.316 1.625 1.927
2.5 0.346 0.680 1.307 1.601 1.885
3.0 0.349 0.682 1.304 1.596 1.876
4.0 0.357 0.689 1.293 1.572 1.840
5.0 0.355 0.686 1.296 1.574 1.851
6.0 0.356 0.689 1.293 1.572 1.841
7.0 0.36 0.69 1.29 1.57 1.84
8.0 0.38 0.71 1.28 1.55 1.82
10.0 0.38 0.71 1.28 1.55 1.81

pothesis in the spirit of (11). In the case of shell models,
it would correspond to

py sal [IL,| sal [©,]
(p2y m, ) (e, ’

where II, is the energy flux defined in (2). Taking abso-
lute values is required by the observation that p, is a pos-
itive quantity, while IT,,, which represents a flux, can take
negative values. Checking this similarity hypothesis
completely would require the evaluation and comparison
of the probability distribution functions of p/{p) and
[TI| /{|II|) for each model. To lower the computational
cost, we adopted a simplified procedure and compared
only some statistical indicators, such as the flatness
(p*)/{p*)? and the asymmetry {p*) /{p?)3/%. The re-
sult is displayed in Fig. 5 for the flatness, and in Fig. 6 for
the asymmetry. The result is consistent with the similari-
ty hypothesis. Indeed, the flatness and asymmetry of p
and |II| follow the same scaling behavior, and differ only
by a (scale-independent) constant. In contrast, p and II
appear to follow different statistics, except in the case
€£=0.5 where IT and |II| coincide. This result is not real-
ly surprising, since Il can take negative values while p is
always positive. The coincidence of statistics for IT and
|TI|, however, could not have been anticipated. It is rem-
iniscent of fully developed turbulence, where it was found
that both (8v)® and |(6v)| follow the same scaling
behavior [21].

This provides a direct (albeit partial) check of the va-
lidity of the similarity hypothesis. Note that a complete
(albeit indirect) check of this hypothesis is furnished by
the very existence of extended self-similarity.

2n

E. Moments hierarchy: B

To check the moments hierarchy (12) hypothesis, we
define the nondimensional energy transfer 7, as

P. FRICK, B. DUBRULLE, AND A. BABIANO 51
|11, |
Ty = H: , (22)
where I1 , is obtained via [see remark (13)]
. <|Hp+1|>
In,=lim ————~ (23)
p—= (1P])

In practice, II, was evaluated by computing the ratio
(M, 441> 7€|TI?) for increasing values of p until some
sort of asymptotic limit was obtained (typically for
p ~10). Note that lack of statistics prevents reliable eval-
uations of the moments of |II| for p > 15, so that we can-
not improve our estimate of II,. This procedure prob-
ably induces a bias in the subsequent estimate of 8. How-
ever, as long as we consider only the lowest order mo-
ments, this bias can be expected to be small.

Once the normalization factor Il , has been obtained,
we may check the hierarchy assumption by plotting the
logarithm of (77 *!)/(#?) as a function of the loga-
rithm of (#?) /{7 ~') at different wave numbers k, and

50 T T T T T T ( )
45 (gi . a) 4
L n + _
40 A .
35 | . B
30 B
25 - o A
20 «® B
e e .* 40O
15 fe . . oo O 0 E
| ®ee®qeece 000 @ mﬁﬁ
lg_ émm$mmmwammmmmmmmmmm¢ e ]
0 + 1 1 1 1 L 1
-5 0 5 10 15 20 25 30
1000 T T T T
+
g of
100 E On LA
se8d 3
10 b 3*“$ ]
2t
o 41‘?' ¢
o ®
1 1 1 1 1
0 5 10 15 20 25
1000 T T T T -+ 3
ﬁ?‘ . e+ (c) §
n +
0, o %;+ 1
100 ¢ 3 E
X ]
I S ]
10 b o-gi¢‘f%.ooooo )
) A 3
o
o3t ‘
1 1 1 1
0 5 10 15 20 25 30

FIG. 5. Flatness factor (x*)/(x?2)? for p3, |©,I|, and ©,,
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€=3.0.
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for different p. If the moments hierarchy holds, we
should obtain a graph made of parallel straight segments:
each segment of line corresponds to the hierarchy for a
given p, at different wave numbers, each segment corre-
sponds to a different p. If the hierarchy holds, all seg-
ments are characterized by the same slope, 3, but a
different origin intercept, 4,. If all the segments lie on
the same line, then all 4, are equal and the probability
distribution of 7 is logarithmic Poisson [4]. Depending
on the value of €, we obtained two types of results. In the
“good case,” the hierarchy is well established; low order
moments are sufficiently separated (in scale) to obtain a
good fit to 5. In the “bad case,” the segments are very
short; it is difficult to define a local slope. However, us-
ing a zooming, it is possible to get a rough estimate of 3.
Typically, “good cases” are obtained for € >0.39 (Fig. 7),
while bad cases are obtained for € <0.39. It is, however,
interesting to note that in all the bad cases, 8 measured
by zooming was found close to unity.

Another difficulty arises as one approaches the value
e=2. In that case, the energy flux tends to zero, and the
estimate of the hierarchy becomes very imprecise. In

6 T T T T T T
3 o ﬁﬁ
5 |G{:|Y1 + . .
0, 0 . (a)
4 b Iml % etx
M A .e eeees® -
3%eqe® oo'o"“" oo *fx A ]
PRI
oL i
30
1000 ; , — . .
ﬁi . (b)
+
Il o
L o -
100 l@ﬂ < 2;
3
[ &
*® 4
10 £ 500@09
&
§9500
s 1 1 .
0 5 10 15 20 25
100 S T T T T 7S 3
n :_ (c)]
I%ﬂ o 653'(5@ 1
L o -
10: 167:‘] X QQ@QQ%? +
o
14>>0<“Q5 Oi ooooooooOO +++ 3
3 ++++++++
o4 +++
0.1 1 1 1 1 1
0 5 10 15 20 25 30

n

FIG. 6. Asymmetry {x*)/{x?)*"? for p}, |©,], and ©,,
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that case, we have checked that the precision can be im-
proved by using the enstrophy flux instead of the energy
flux. This flux can be defined in a way analogous to the
energy flux as

3 4e—1 1

Qn=kn 64 en—l—‘S—en . 24)

But, in spite of the absence of mean energy flux the evalu-
ations done for energy and enstrophy flux confirm the
hierarchy and give the same value of 3.
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FIG. 7. Definition of B: (a) e=0.42; (b) €=0.7; (c) e=1.25;
(d) €e=3.0. The points corresponding to the same order (p) are
connected by lines.



5590
O_L.}H' T
sa | P { ! } { } |
04 N
5% 3 3 3 3§ 3 ?
02 3 ]
A B a

4
S A

FIG.8. Band Avse.

All the values of 8 as a function of € are given in Fig. 8
and Table I. For clarity, the range 0 <€ <1 has been en-
larged. Note the steady decrease of 3 between 1 and O for
€ > 1 and the crossing occurring at € =0.39, where 3 goes
from values ~1 to values <1. Note also the discontinui-
ty appearing at €e=1, which seems to indicate that sys-
tems with € <1 or £ > 1 belong to a distinct scaling class.

TABLE III. Theoretical relative scaling exponents obtained
using formula (16) and the values of A and 3 measured. The er-
ror in the scaling exponent is +0.01 in all cases.

€ A B El Ez 54 Es Es

0.33 0.0007 097 033 0.67 133 1.67 2.00
0.39 0.002 0.85 033 0.67 133 1.67 2.00
0.5 0.45 047 037 070 127 152 176
0.75 0.65 031 042 074 121 1.39 155
1.0

1.15 —0.013 084 033 0.67 1.33 1.67  2.00
1.25 0.013 0.87 033 0.67 1.33 1.67 2.00

1.5 0.077 0.68 0.34 0.67 1.33 1.65 1.98
1.75 0.13 0.70 034 067 132 164 196
2.0 0.18 0.63 034 068 132 1.63 1.93
2.5 0.29 0.59 035 068 130 160 1.88
3.0 0.32 060 035 068 130 159 1.87
4.0 0.29 0.57 035 068 130 159 1.86
5.0 0.30 054 035 068 130 159 1.87
6.0 0.29 055 035 069 130 159 1.87
7.0 0.28 0.58 035 0.68 1.30 1.60 1.88
8.0 0.28 0.55 035 0.68 1.30 1.59 1.87
10.0 0.30 052 036 069 130 158 1.86
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F. Intermittency: A

Our estimate of II, can also be used to check the inter-
mittency hypothesis (14) and to compute the intermitten-
cy parameter A. In our shell models, it is obtained via

(m, )

(m)=—

(pp)* . (25)
The curves (II,) vs {p>) are displayed in Fig. 9 for
1 <e <10. The corresponding intermittency parameter as
a function of € can be found in Table I and in Fig. 8. One
may note that the behavior of A as a function of ¢ is simi-
lar to the behavior of the mean flux parameter ® for e > 1
and similar to ®+1 for e<1 (Fig. 2). As for 3, A is
characterized by two distinct features: a crossing between
A=0 and A0 occurring at €=0.39, and a discontinuity
appearing at e=1.

G. Probability distribution functions

We have seen that the constants in the hierarchy are
independent of the order of the hierarchy for €>2 and
for 0.5<e< 1. This means that the logarithmic Poisson
statistics for the energy transfer, discussed in [4,5], is only
achieved for these €. In Fig. 10 we show the probability
distribution function for log;ym measured in our shell
models for e=0.42 (“non-Poisson case”) and €¢=3 (loga-
rithmic Poisson case) at a scale inside the “inertial
range.” Both distributions are strongly skewed towards
negative log,,7 and display an exponential wing, as in 3D
turbulence. The dotted line shows the comparison with a
logarithmic Poisson distribution:



AYe —H
L(y+1)’

with Y=logg(mC). The A was chosen to ensure that
(Y)=({log,ym)+C)/log,,B; C is a constant related to
the A4, in the hierarchy [Eq. (12)], which determines the
position of the cutoff on the right side of the maximum.
The fits shown use A=15.6 and C =3300 for €=0.42 and
A=8.8 and C=329 for ¢=3, together with =0.6 and
0.55 as measured from the moment hierarchy. As may be
seen from Fig. 10, the fit is rather good for e=3 and rath-
er poor (except at the origin) for e=0.42.

P(Y)= —1<Y<w (26)

IV. DISCUSSION

In this paper, we have studied a general class of shell
models, focusing on their scaling properties. This class of
models covers a wide variety of dynamical properties,
characterized by a parameter €. For € <0.39, the models
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have a stable fixed point solution, corresponding to K41
solution. Shell models with € >0.39 have a chaotic dy-
namics. The shell models are characterized by two con-
servation laws, the energy and a generalized enstrophy.

We have checked that the property of extended self-
similarity is common to all the models studied, thereby
providing further evidence that this property is common
to many scale invariant systems. Using the extended
self-similarity, we have measured the scaling exponents
&, of the velocity structure functions up to order 6.
Their relative value, §, /83, is provided in Table II. Devi-
ations from the linear K41 law are observed, whenever
the system crosses the value ¢ =0.39.

Our next result concerns the existence of the moment
hierarchy (12), which is observed in 3D isotropic tur-
bulence [8]. This hierarchy is clearly observed in models
with € >0.39, with measurable B and A parameters (Figs.
7-9). The constants of the hierarchy, 4,, seem to ap-
proach a constant value only for € >2. Therefore proba-
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bility distributions for the energy transfer are exactly log-
arithmic Poisson only in the cases €>2. This was
confirmed by direct measurements of the probability dis-
tribution function. However, even in the case € <2, the
measured probability distribution functions display ex-
ponential wings and nonzero skewnesses, features also
observed in 3D turbulence. This might be an indication
that they are a signature of the moment hierarchy, and
are characteristic of this class of systems. To check that
the hierarchy is responsible with the intermittency in the
scaling exponents, we have computed the ‘“theoretical”
relative scaling exponents, given by Eq. (16), using the
values of B and A measured directly. The result is given
in Table III. Comparison with the measured values given
in Table III shows that the best agreement (less than 1%)
is obtained for 1 <e <4 and €<0.39. The deterioration
of the agreement observed for large values of € could be
linked with the deterioration of the statistics, due to com-
putational limitations. An interesting observation is that
the agreement between the universal relation (16) and the
measured scaling exponents can be improved (up to 1%
level) for slightly lower values of B, which are shown in
Fig. 11. For £>1, these “best values” follow a scaling
relation

-7

£E—§€,
) (27)

B =
best £

with €,=0.3843 and the critical exponent y=0.4. A
similar scaling law seems to hold for 0.39 <e <1, with a
different normalization (about four times smaller), but
with the same critical exponent ( see Fig. 11).

If we accept the idea that, at least for € > 1, our class of
shell models satisfies the moment hierarchy also observed
in 3D turbulence, we now have at our disposal a unique
set of data about this hierarchy as a function of the prop-
erties of the system. Figure 8 summarizes our results and
shows 3 and A as a function of €. Clearly, even in sys-
tems with similar characteristics, variation of these two
parameters can be observed, although a sort of saturation
towards A=0.3 seems to occur at large €. This shows
that neither A nor 3 can be regarded as universal quanti-
ties and seem to depend on the system. This is a little bit
disappointing, because it removes hopes to find a simple
method to compute these parameters in each system. We
may, however, note that the case e =1, characterizing the

10 ¢ T T

0.01 0.1 . 1 10
|22
FIG. 11. B versus g,/(e—¢;) in log-log coordinates. The
lines correspond to power laws with exponent 0.4.
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transition between systems with helicitylike (¢ < 1) or en-
strophylike (g > 1) conservation laws, clearly corresponds
to some transition, since both 8 and A are discontinuous
there. This indicates that the conservation laws play a
non-negligible role in the determination of these two pa-
rameters. For the sake of completeness, we also comput-
ed the codimension of dissipation structures, defined as
d=A/(1—p) (see, e.g., [3]) in the case € > 1 (see Fig. 12).
In fully 3D developed turbulence, where the dissipative
structures are filaments, this codimension is of the order
of 2 [3]. In the present case, it increases from 0.2 for
£€=1.25 up to 0.9 for e=3 and settles down to 0.6 for
larger €. Again, this parameter does not appear to be
“universal.”

In summary, we have shown that shell models present
the same kind of scaling properties as 3D turbulence, but
with different parameters depending on the conservation
laws. This confirms and extends a recent work by Benzi
et al. [7], who showed that only shell models conserving
the energy and the helicity display the same intermitten-
cy as in 3D turbulence. It is clear that additional theoret-
ical work is needed to understand some results obtained
in this paper. For example, we have not tried to investi-
gate the influence of the viscosity on the scaling proper-
ties. Preliminary studies indicate that it may play a role
[7]. Also, it would be interesting to use more realistic
models of turbulence to study the nonlocal scale invari-
ance. We are currently investigating the scale invariance
properties of “tree-shell models” [26] (in which more
than one shell is used to describe one scale) along the
lines followed in this paper.
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